Lesson No. 08 (Branching)
Note: See addressing modes in handouts of Lesson no. 07
Comparison and Conditions

Conditional jump was introduced in the last chapter to loop for the addition of a fixed number of array elements. The jump was based on the zero flag. There are many other conditions possible in a program. For example an operand can be greater than another operand or it can be smaller. We use comparisons and boolean expressions extensively in higher level languages. They must be available is some form in assembly language, otherwise they could not possibly be made available in a higher level language. In fact they are available in a very fine and purified form.

The basic root instruction for all comparisons is CMP standing for compare. The operation of CMP is to subtract the source operand from the destination operand, updating the flags without changing either the source or the destination. CMP is one of the key instructions as it introduces the capability of conditional routing in the processor.

A closer thought reveals that with subtraction we can check many different conditions. For example if a larger number is subtracted from a smaller number a borrow is needed. The carry flag plays the role of borrow during the subtraction operation. And in this condition the carry flag will be set. If two equal numbers are subtracted the answer is zero and the zero flag will be set. Every significant relation between the destination and source is evident from the sign flag, carry flag, zero flag, and the overflow flag. CMP is meaningless without a conditional jump immediately following it.
Another important distinction at this point is the difference between signed and unsigned numbers. In unsigned numbers only the magnitude of the number is important, whereas in signed numbers both the magnitude and the sign are important. For example -2 is greater than -3 but 2 is smaller than 3. The sign has affected our comparisons.

Inside the computer signed numbers are represented in two’s complement notation. In essence a number in this representation is still a number, just that now our interpretation of this number will be signed. Whether we use jump above and below or we use jump greater or less will convey our intention to the processor. The jump above and greater operations at first sight seem to be doing the same operation, and similarly below and less operations seem to be similar. However for signed numbers JG and JL will work properly and for unsigned JA and JB will work properly and not the other way around.

It is important to note that at the time of comparison, the intent of the programmer to treat the numbers as signed or unsigned is not clear. The subtraction in CMP is a normal subtraction. It is only after the comparison, during the conditional jump operation, that the intent is conveyed. At that time with a specific combination of flags checked the intent is satisfied.

For example a number 2 is represented in a word as 0002 while the number -2 is represented as FFFE. In a byte they would be represented as 02 and FE. Now both have the same magnitude however the different sign has caused very different representation in two’s complement form. Now if the intent is to use FFFE or decimal 65534 then the same data would be placed in the word as in case of -2. In fact if -2 and 65534 are compared the processor will set the zero flag signaling that they are exactly equal. As regards an unsigned comparison the number 65534 is much greater than 2. So if a JA is taken after comparing -2 in the destination with 2 in the source the jump will be taken. If however JG is used after the same comparison the jump will not be taken as it will consider the sign and with the sign -2 is smaller than 2. The key idea is that -2 and 65534 were both stored in memory in the same form. It was the interpretation that treated it as a signed or as an unsigned number.

The unsigned comparisons see the numbers as 0 being the smallest and 65535 being the largest with the order that 0 < 1 < 2 … < 65535. The signed comparisons see the number ‑32768 which has the same memory representation as 32768 as the smallest number and 32767 as the largest with the order -32768 < -32767 < … < -1 < 0 < 1 < 2 < … < 32767. All the negative numbers have the same representation as an unsigned number in the range 32768 … 65535 however the signed interpretation of the signed comparisons makes them be treated as negative numbers smaller than zero.

All meaningful situations both for signed and unsigned numbers than occur after a comparison are detailed in the following table.

	DEST = SRC
	ZF = 1
	When the source is subtracted from the destination and both are equal the result is zero and therefore the zero flag is set. This works for both signed and unsigned numbers.

	UDEST < USRC
	CF = 1
	When an unsigned source is subtracted from an unsigned destination and the destination is smaller, a borrow is needed which sets the carry flag.

	UDEST (USRC
	ZF = 1 OR CF = 1
	If the zero flag is set, it means that the source and destination are equal and if the carry flag is set it means a borrow was needed in the subtraction and therefore the destination is smaller.

	UDEST (USRC
	CF = 0
	When an unsigned source is subtracted from an unsigned destination no borrow will be needed either when the operands are equal or when the destination is greater than the source.

	UDEST > USRC
	ZF = 0 AND CF = 0
	The unsigned source and destination are not equal if the zero flag is not set and the destination is not smaller since no borrow was taken. Therefore the destination is greater than the source.

	SDEST < SSRC
	SF (OF
	When a signed source is subtracted from a signed destination and the answer is negative with no overflow than the destination is smaller than the source. If however there is an overflow meaning that the sign has changed unexpectedly, the meanings are reversed and a positive number signals that the destination is smaller.

	SDEST (SSRC
	ZF = 1 OR SF (OF
	If the zero flag is set, it means that the source and destination are equal and if the sign and overflow flags differ it means that the destination is smaller as described above.

	SDEST (SSRC
	SF = OF
	When a signed source is subtracted from a signed destination and the answer is positive with no overflow than the destination is greater than the source. When an overflow is there signaling that sign has changed unexpectedly, we interpret a negative answer as the signal that the destination is greater.

	SDEST > SSRC
	ZF = 0 AND SF = OF
	If the zero flag is not set, it means that the signed operands are not equal and if the sign and overflow match in addition to this it means that the destination is greater than the source.

Conditional Jumps

For every interesting or meaningful situation of flags, a conditional jump is there. For example JZ and JNZ check the zero flag. If in a comparison both operands are same, the result of subtraction will be zero and the zero flag will be set. Thus JZ and JNZ can be used to test equality. That is why there are renamed versions JE and JNE read as jump if equal or jump if not equal. They seem more logical in writing but mean exactly the same thing with the same opcode. Many jumps are renamed with two or three names for the same jump, so that the appropriate logic can be conveyed in assembly language programs. This renaming is done by Intel and is a standard for iAPX88. JC and JNC test the carry flag. For example we may need to test whether there was an overflow in the last unsigned addition or subtraction. Carry flag will also be set if two unsigned numbers are subtracted and the first is smaller than the second. Therefore the renamed versions JB, JNAE, and JNB, JAE are there standing for jump if below, jump if not above or equal, jump if not below, and jump if above or equal respectively. The operation of all jumps can be seen from the following table.

	JC

JB

JNAE
	Jump if carry

Jump if below

Jump if not above or equal
	CF = 1
	This jump is taken if the last arithmetic operation generated a carry or required a borrow. After a CMP it is taken if the unsigned source is smaller than the unsigned destination.

	JNC

JNB

JAE
	Jump if not carry

Jump if not below

Jump if above or equal
	CF = 0
	This jump is taken if the last arithmetic operation did not generated a carry or required a borrow. After a CMP it is taken if the unsigned source is larger or equal to the unsigned destination.

	JE

JZ
	Jump if equal

Jump if zero
	ZF = 1
	This jump is taken if the last arithmetic operation produced a zero in its destination. After a CMP it is taken if both operands were equal.

	JNE

JNZ
	Jump if not equal

Jump if not zero
	ZF = 0
	This jump is taken if the last arithmetic operation did not produced a zero in its destination. After a CMP it is taken if both operands were different.

	JA

JNBE
	Jump if above

Jump if not below or equal
	ZF = 0 AND CF = 0
	This jump is taken after a CMP if the unsigned source is larger than the unsigned destination.

	JNA

JBE
	Jump if not above

Jump if not below or equal
	ZF = 1 OR CF = 1
	This jump is taken after a CMP if the unsigned source is smaller than or equal to the unsigned destination.

	JL

JNGE
	Jump if less

Jump if not greater or equal
	SF (OF
	This jump is taken after a CMP if the signed source is smaller than the signed destination.

	JNL

JGE
	Jump if not less

Jump if greater or equal
	SF = OF
	This jump is taken after a CMP if the signed source is larger than or equal to the signed destination.

	JG

JNLE
	Jump if greater

Jump if not less or equal
	ZF = 0 AND SF = OF
	This jump is taken after a CMP if the signed source is larger than the signed destination.

	JNG

JLE
	Jump if not greater

Jump if less or equal
	ZF = 1 OR SF (OF
	This jump is taken after a CMP if the signed source is smaller than or equal to the signed destination.

	JO
	Jump if overflow.
	OF = 1
	This jump is taken if the last arithmetic operation changed the sign unexpectedly.

	JNO
	Jump if not overflow
	OF = 0
	This jump is taken if the last arithmetic operation did not change the sign unexpectedly.

	JS
	Jump if sign
	SF = 1
	This jump is taken if the last arithmetic operation produced a negative number in its destination.

	JNS
	Jump if not sign
	SF = 0
	This jump is taken if the last arithmetic operation produced a positive number in its destination.

	JP

JPE
	Jump if parity

Jump if even parity
	PF = 1
	This jump is taken if the last arithmetic operation produced a number in its destination that has even parity.

	JNP

JPO
	Jump if not parity

Jump if odd parity
	PF = 0
	This jump is taken if the last arithmetic operation produced a number in its destination that has odd parity.

	JCXZ
	Jump if CX is zero
	CX = 0
	This jump is taken if the CX register is zero.

